PerkinElmer
  • Research Areas
  • Environmental

Microplastics Analysis

From packaging, bags, and synthetic clothing to water bottles, cosmetics, and toothpaste, plastics and microplastics are everywhere and in everything – including our own bodies. Microplastics are becoming an issue of real environmental and societal concern globally, with increasing alarm about the amount of plastic materials floating in the world’s rivers, seas and oceans. But microplastics present another major problem, in that these polymer debris particles are small enough to be invisible to the naked eye, and they're entering our river and marine environments – and ultimately into the food supply.

The impact of microplastic pollution is growing every day. And that is why many organizations worldwide are working to find solutions to this enormous problem, by characterizing and quantifying microplastics and their origins and impact on the environment and food chain.

Helping Move Microplastics Research Forward

To better identify and quantitate microplastics and the organic and bacterial pollutants hosted by them, or to measure the biological impact on the marine and freshwater ecosystem and the food chain, our complete range of innovative solutions, backed by more than 70 years' experience in method development support, can help you obtain accurate and reliable results.

For your microplastics research needs, including identification of microplastics and associated pollutants, and eco-toxicological studies on marine bio-organisms together with genomic and proteomic effects, today you can partner with just one trusted, knowledgeable supplier: PerkinElmer.

For research use only. Not for use in diagnostic procedure.

Polymer Identification

One of the principal analytical techniques for identifying polymers is infrared (IR) spectroscopy. We deliver a family of advanced instruments, from the Spotlight 200i and Spotlight 400 IR imaging systems to the portable, fast, and easy-to-use Spectrum Two IR system, all outfitted with ready-made protocols, a materials library, and unique Spectrum Touch software.

Learn more

Microplastics as a Habitat

Microplastics can concentrate organic pollutants such as pesticides on the biofilms that build up on their surface. These pollutants are consumed by marine organisms, causing them harm, and are then passed up the food chain to our dinner tables. Chromatography and mass spectrometry allow identification and measurement of these pollutants, and automation of sample preparation steps, such as solid-phase extraction (SPE), can make the whole process more efficient.

Learn more

Effects on Bio-organisms

Concern is growing about the impact of microplastics on the marine and freshwater ecosystem, and in particular the effect on the food chain. In addition to leaching harmful additives, microplastics generate a surface biofilm that concentrates organic pollutants such as pesticides and attracts potentially harmful bacteria. This biota is consumed by marine organisms with potentially harmful consequences for the organisms themselves, the food chain, and human health.

Learn more

Insights & Learning

Microplastics and persistent fluorinated chemicals in the Antarctic

This briefing presents the findings of water samples to confirm the presenc ...

Learn more

Analysis of PAHs in Marine Plastic Debris from North Atlantic Gyre

This study measures the levels of PAHs on the surface of microplastic parti ...

Learn more

FT-IR Microscopic Analysis of Microplastics in Bottled Water

This application note describes the analysis of bottled water to determine ...

Learn more

Need help with Microplastics Analysis?

Join the Microplastics Scientific Network to receive research updates